Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 14(9): 3223-30, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23865684

RESUMO

In contrast to the success in artificial DNA- and peptide-based nanostructures, the ability of polysaccharides to self-assemble into one-, two-, and three-dimensional nanostructures are limited. Here, we describe a strategy for designing and fabricating nanorods using a regioselectively functionalized cellulose derivative at the air-water interface in a stepwise manner. A semisynthetic chlorophyll derivative, pyro-pheophorbide a, was partially introduced into the C-6 position of the cellulose backbone for the design of materials with specific optical properties. Remarkably, controlled formation of cellulose nanorods can be achieved, producing light-harvesting nanorods that display a larger bathochromic shift than their solution counterparts. The results presented here demonstrate that the self-assembly of functionalized polysaccharides on surfaces could lead the nanostructures mimicking the naturally occurring chloroplasts.


Assuntos
Celulose/análogos & derivados , Celulose/química , Clorofila/análogos & derivados , Nanotubos/química , Silicatos de Alumínio/química , Fontes de Energia Bioelétrica , Clorofila/química , Eletrodos , Ligação de Hidrogênio , Nanotubos/efeitos da radiação , Propriedades de Superfície
2.
Biomacromolecules ; 8(12): 3740-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17979237

RESUMO

Homogenous acylation and carbanilation reactions of wood-based lignocellulosic materials have been investigated in ionic liquids. We have found that highly substituted lignocellulosic esters can be obtained under mild conditions (2 h, 70 degrees C) by reacting wood dissolved in ionic liquids with acetyl chloride, benzoyl chloride, and acetic anhydride in the presence of pyridine. In the absence of pyridine, extensive degradation of the wood components was found to occur. Highly substituted carbanilated lignocellulosic material was also obtained in the absence of base in ionic liquid. These chemical modifications were confirmed by infrared spectroscopy, (1)H NMR, and quantitative (31)P NMR of the resulting derivatives. The latter technique permitted the degrees of substitution to be determined, which were found to vary between 81% and 95% for acetylation, benzoylation, and carbanilation, accompanied by similarly high gains in weight percent values. Thermogravimetric measurements showed that the resulting materials exhibit different thermal stabilities from those of the starting wood, while differential scanning calorimetry showed discrete new thermal transitions for these derivatives. Scanning electron microscopy showed the complete absence of fibrous characteristics for these derivatives, but instead, a homogeneous porous, powdery appearance was apparent. A number of our reactions were also carried out in completely recycled ionic liquids, verifying their utility for potential applications beyond the laboratory bench.


Assuntos
Celulose/química , Líquidos Iônicos/química , Lignina/química , Madeira/química , Celulose/análise , Líquidos Iônicos/análise , Lignina/análise , Madeira/análise
3.
J Agric Food Chem ; 55(22): 9142-8, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17907779

RESUMO

The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an amorphous mixture of its original components. The cellulose of the regenerated wood can be efficiently digested to glucose by a cellulase enzymatic hydrolysis treatment. Furthermore, completely acetylated wood was found to be readily soluble in chloroform, allowing, for the first time, detailed proton nuclear magnetic resonance (NMR) spectra and NMR diffusion measurements to be made. It was thus demonstrated that the dissolution of wood in ionic liquids now offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components. Furthermore, considering the relatively wide solubility and compatibility of ionic liquids with many organic or inorganic functional chemicals or polymers, it is envisaged that this research could create a variety of new strategies for converting abundant woody biomass to valuable biofuels, chemicals, and novel functional composite biomaterials.


Assuntos
Madeira/química , Acetilação , Imidazóis , Imageamento por Ressonância Magnética , Picea , Pinus , Solubilidade , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...